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- REMOTE STATIONARY WAVE FIELD GENERATED BY LOCAL PERTURBING SOURCES IN 
A FLOW OF STRATIFIED FLUID* 

V.F. SANNIKOV 

A linear formulation is used to study the problem of stationary waves 
formed in a uniform flow of an inviscid incompressible vertically 
stratified fluid past a point source or a mass dipole. Formulas are 
derived representing the characteristics of the wave field in the form 
of the sum of single integrals. A method is developed for constructing 
complete asymptotic expansions of the integrals obtained for large 
distances from the wave generator, including uniform expansions near the 
leading fronts of the separate modes. Approximate solutions of the 
problem in question exist (/l-4/ et al.). The behaviour of the character 
istics of the wave field near the leading fronts of internal waves was 
studied in /5, 6/. In the case of a deep liquid the asymptotic form 
uniform in the neighbourhood of the leading fronts is expressed in terms 
of Fresnel integrals /5/, and in the case of a liquid of finite depth by 
Airy functions /6/. Examples of the exact solution of the problem are 
given in /7/. 
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1. Let an inviscid incompressible fluid occupy the region -00 (z,y < +cc, -h<z<O 
and let it flow with constant velocity c in the positive direction of the horizontal x axis. 
The velocity of the unperturbed fluid p,,(z) depends on the single vertical z coordinate, the 
function ~~(2) is monotonic and non-increasing. A point source of constant intensity q is 
situated at the depth h, from the level of the unperturbed free surface z = 0 of the fluid. 
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The stationary wave field generated by the source is described in the linear approximation by 
the equation for the vertical component of velocity w(x,y,z) /2, 3/ with the boundary con- 
ditions 

(D - gc+A,) u = 0 (z = 0), w = 0 (a = -_h) 
w-to (X2-+-Ila-+oo) 

(1.2) 

D = 6Vi5xe&, A, = P/ax2 + a2/aya, iv2 (2) = _-gp,-~ap,~az 

Here N(g) is the Brunt-Vai&.l.a frequency, g is the acceleration due to gravity, and 
a(*) is the delta function. The boundary conditions must be supplemented with the radiation 
condition, which is that the main wave perturbations are formed in the downstream direction. 

Applying to (1.1) and (1.2) a Fourier transformation in the variables x and y we obtain, 
for the transform of the vertical component of velocity, 

w(r,~,z)=~z~)-l_~ ( w 2, y,z)exp[- ir(xcos6 + y sin 0)]dxdy 

the following boundary value problem: 

(poW,)z + PO IN"@ cca Wn - 91 w = (2JPq Ip,O (a +- h,)l, 
W, - g (c 00s q-2 w = 0 (2 = O), w = 0 (2 =i -&) 

(1.3) 

Let us choose p = 9 as the spectral parameter, and let B,, w?l (n = 192,. . .; @I> B* >,..) 
be a set of eigenvalues and orthononnalised eigenfunctions of the Stunn-Liouville problem 

(PcW,), -I- pi, 0% - 6) W = 0 (- h<z < 0) 
W, - ghW = 0 (2 = O), W = 0 (z = -h), h = (c 00s 8)-a 

ok 
p~~~w~~z=o, nfm; s p@W*sdz=If 

--h 

The solution of the inhomogeneous boundary value problem (1.3) can be written in the 
form of a series /2, 3, 7f 

W = (2n)‘+ qpo (- h) til @,, (2, - h, 8) (r* - fh) (1.5) 

Let us list briefly the basic properties of the dispersion relations fin(B), known from 
the work done concerning the internal waves excited by the moving sources of perturbations, 
or the waves in the moving fluid excited by the stationary sources. Let us write O< 0<n/2. 
The properties &,(6) can be easily transformed to other intervals of variation in 8, since 
the functions &,(e) depend in fact on h = (ccos8)-'. Thus the values of p*(B) are real; the 
functions &(@) increase monotonically and tend to infinity as e-tx12. If c<c, (es is 
the velocity of propagation of the longitudinal waves of the II-th mode), then &(6)> 0. If 

c>Cnt then the function p,,(0) has a single simple zero 8 = e,,, 8, = arc coS(c,/c). We know 
/l/ that when c> c,, the angular width of the region of basic wave perturbations of then-th 
mode is equal to 2 arc sin (c,/c). 

Applying to (1.5) an inverse Fourier transformation, we obtain an expression for the 
vertical component of the velocity in the form of a sum of double integrals 

n/a 
w, lx, y, 2) = Ae S ma (2. - k, 3 L 64 R Y) de 

-n/s 

r,(e,A,y)=~r(r~ -Q-l exp[irRoos@-Y)]dr 
0 

(1.7) 

0.8) 
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Here R, y are polar coordinates in the horizontal (x, y):s = Rmsy, y = R sin y-plane. 
When fin>O, the path of integration in (1.8) passes the pole along the small semicircle in 

the lower complex half-plane of the parameter I‘. Such a method of bypassing the singularity 
is determined when considering the problem of establishing the wave field /7/. 

The vertical displacements of the fluid particles in the stream c(x,y,z), caused by the 

action of the source are connected, in the linear approximation, with the vertical component 
of the velocity, by the kinematic relation cayax = W. Integrating (1.6)-(1.8) in x, we obtain 

5 (X,Y,Z) = !7(2nac)-lPo(- h)&&~ Y*4 (1.9) 
n/z 

5, (G Yt 4 = Re _i,, 0” (2, - hl, ‘3) cos-’ W,, (Q, R, y) d0 (1.10) 

J, (0, R, v) = - i 5 (9 - f+,)-l exp [trR cos (0 - r)] dr (1.11) 
0 

The integration path in (1.11) is the same as in (1.8). 
The variable change r = 1 fin 1’l.t enables us to collect all the parameters occurring in 

the integrands in (1.8) and (1.4) in a single combination R 1 p,,I"* cos (0 - y). Regarding J,, and 
I,, as Laplace transforms and using the known analytic properties of the latter, we obtain 

I, = G (- RA,), J, = r,,-‘F (- RA,J, A, (0, y) = (1.12) 

rn (0) ~0s (0 - Y) 

Here G(p) and F (p) are the analytic continuations ofthe functions 

g(P)=~l(tr+l)-le-PLdt, Y(~)=~(t*+l)-~e-~'dt Wp>O) 
0 0 

in the complex plane of the parameter p with a cut (- 00, 01; r,,(O)= ~,,‘~(O) if fin>0 and 

r, (e) = i I- f& (ep if on < 0 the root is arithmetic. We note that when (3 varies from 

- n/2 to n/2 , the curve P = - RA, (e, Y) moves only along the axes of the complex p 

plane. The edge of the cut is chosen arbitrarily when Im A,, = 0, Re A,,> 0, since we need 
only the real parts of the functions G(p) and F(p) in formulas (1.7) and (1.101, while 

ReG(p) and ReF(p) vary continuously in the course of the passage through (- 00,Ol. 

2. Let us describe briefly the properties of the functions G(p) and F(p)which will be 

needed when analysing the solutions obtained. 

lo. We have the following formulas /8/ in the region 1 argp j<n: 

G(p) = - Ci (p) cosp + si (p) sin p, F(p) = ci (p) sinp f (2.1) 
si (p) cos p 

(si (p) = n/2 - Si (p); Si (p) and Ci (p) are the integral sine and cosine respectively). 

2O. Information on the behaviour of the functions G(p) and F(p) near the point p = 0 is 
given by the expressions following from (2.1) and from the definitions of Si(p) and Ci (p) /73/ 

G (P) = - In P ~0s P + g, (P), F (P) = In P sin P -I- fl (P) (2.2) 

where gl(p) and II(p) are entire functions, and the principal branch in the complex p 
plane with a cut (- oo,Ol is chosen for In p. 

30. Differentiating (2.1) we can confirm that 

G(P)=-+‘(P). W)=+[Gb)+l~pl (2.3) 

4O. When lp I+ oo, we have the asymptotic expansions /8/ 

~~~)--~~(--~)~~Z~+~)lp-l~~. P(P)- (2.4) 

mt,(- 1)"'(2m)! p-am-1 

The expansions are uniform in arg p when 1 arg p I< n - e, e>O! 
5O. From the definition of the functions G(p) and F(p) it follows that 

G (- p) = G (p) + he*‘P, F (- p) = - F (p) + neiap 
s = sign (arg p) 

(2.5) 

Using (2.4) and (2.5), we can construct an asymptotic form of the functions G(p) and 

F(P) as Ip I+co, uniform in the neighbourhood of the cut. 
Thus the integrals (1.8) and (1.11) have been expressed in terms of known functions, and 

we can assume that the solutions obtained forthevertical displacement and vertical velocity 
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fields generated by a point source are sums of single integrals of the form 

n/z 
w,,=Re S (&G (- RA,) de, 

--n/z 
niz 

5, = Re 5 On (r,, cos 0)-l F (- RA,,) de 
-*,z 

(2.6) 

3. Let us now analyse the contribution of the n-th mode in the remote region of the 
wave field (as R -+ -I- m). We exclude from our discussion the neighbourhood of the vertical 
plane y=O. We assume that 6<y<n--6,8 is a small positive number. First we will 
make certain comments concerning the construction of as\ymptotic expansions of the integrals 
(2.6). Formula (2.2) shows that the integrands in (2.6) have logarithmic singularities at 
points which are the zeros of A,,. The function An (9,~) = r,,(l3)cos(l3 - y) has a zero e = e,, 
8, = y - n/2 and, provided that c> c,,, 6 = f 6,, are also the zeros of rn (6). The case 
when C=C, when 0, = 0 is not discussed. If 8, f rt en, then El,, is a simple zero; 
r)/de = r,, (e,)# 0 

dA, (6,, 
and the points f 6, are zeros with multiplicity of $: 

d42(fen,Y)ide=cos2(fen--)dS,(~ e,)idefo 

Let us use the expansion of the unity /9/ 

1 = q (0) + q (6, 0,) + q (6, 6,) + v (0, -0,) (3.4) 

Here 7) (e, T) is an infinitely differentiable finite function, different from zero only 
in a certain neighbourhood u(r) of the point 8 = r,n (z,'c)= 1, d"'n (7, z)/dClm = 0, m> 1. The 
function T) (0) complements to unity in the interval (-n/2, n/2) the sum of the remaining 
three terms. 

In accordance with (3.1) the integrals (2.6) decompose into a sum of four integrals, 
three of which represent the contributions of the zeros of A,,. The carrier of the function 
'1 (0) represents the union of intervals (two when c<c, and four when c>c,,) on which the 
quantity I A,, I has a uniform lower limit. According to the theorem on the integration of 
asymptotic series /9/ the formulasfor zu,, and &,, asymptotic as R-t+ co, can be written 
using (2.4) and (2.5) in the form of a power series and a Fourier integral. The asymptotic 
form of the Fourier integral is equal, with the accuracy of up to 0 (R-“), to the sum of the 
contributions of the boundary points and stationary points /9/. The boundary points of the 
integrals in question are the zeros of A,, and 6 = n/2. The contribution of the zeros of A,, 
is already separated by the introduction of the functions T) (e,z), and the point 8 = n/2 yields 
a contribution towards the integrals (2.6) oftheorder O(R-“) when ii<y<+n--6. The 
stationary points 8, are solutions of the equations dA,,/de = 0 under the condition that 
ReA,, > 0, ImA, = 0. The number of stationary points N(y) depends on the parameter y. It 
can be shown that N(y) is always finite. 

Thus the above analysis shows that the asymptotic form oftheintegrals (2.6) has, with 
the accuracy of up to 0 (R-), the form 

(3.2) 

(3.3) S, (p) - 5 (- l)m+” (2m + 1 - v)! R-m-2 x 
m-o 

n/a 

S CJ,,qA;-s” de, any = on (rn cos cl)_ 
-n/n 

Here v = 0 for w,, and v = 1 for L. The contribution of the stationary point et is 
the integral 

D, (R, ek) = n Re [i(‘+) 1 u&q (0, ok) exP @%) del (3.4) 
-n/a 

and the contribution ofthezero z and of the function A,, istheintegral 

n/a 
z,,u (R. z) = Re 1 Qwq (0. T) Ev (- RA,J de 

--n/z 

(E, (P) - G (P), J% (P) = F (P)) 

(3.5) 

The formulas which give full asymptotic expansions of the contributions of the simple, 
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near and multiple stationary points can be found in /9/. 

We obtain the asymptotic forms of the integrals (3.5) by integration by parts with the 

help of (2.3). The first integration yields 

The second intearal in the above formula has the same form as the initial intearal. 

Integrating it by 

We note that 

function d, (0, y), 

parts we obtain the term of the order O(P), etc. As a result we have 

n/z 

Z&J)- 2 (- 1p+vI?+zm j M2m-Y PJhrl (e, dl In I h, I de (3.6) 
rn=l --n/z 

the asymptotic forms of the contributions of the zeros in 0 of the 

represents power series similar to (3.3). Let 

&(R)=&,(R) + x Z,V(RJ) 
r=e., *a, 

Adding the series for snV and Z,,, term by term, we obtain 

It can be confirmed that (3.8) represents a regularized form of the integral 

n/z 

c,,(v)= 5 CP~ (rn cos e)-v A?m-z de 

-n/z 

in which Az-2m-2m-2 must be regarded as a generalized function. In particular, 

(3.7) 

(3.8) 

(3.9) 

a,,(l)=v. p. s @n[ ma cos e cos (e - y)]-l de 
--n/2 

Thus the asymptotic forms of the integrals (2.6) are represented by the sums of the 

power series (3.7) and contributions of the stationary points. The first term of the power 
series for w, in O(lP), and for 5, it is O(R-I). 

4. The asymptotic expansions obtained will not be uniform in y:6<y<n--6,6>0 

when 8, --f - en or e. -+ 8,. When I&-t- en - 0 , the zeros of An merge with the stationary 

point situated between them. The vertical plane in the (5, y, z) space for which e. = - en 
or Y = Yn, yn = arc sin c,/c, corresponds to the boundary of the region of the basic wave perturba- 

tions of the n-th node. In the case when Y>Y?S, the equation of stationary phase dA,lde = 

0 has no solutions. When 8,-t- 6, + 0 or O,-+O,, only the zeros of A,, will merge. It 

can be confirmed that when -9, - B0 > 6,,6,> 0, the stationary points are separated by a 

uniform distance from the zeros of An and the asymptotic expansions (3.2) are uniform 

y:a<y<n--6. 
Let US write 0, = -en-e0 and let 1 w,, I((l, i.e. we consider the region of the 

front of the n-th mode. The asymptotic form of the integrals (2.6) has, in this case, 

following form with an accuracy of up to O(R-“): 

%I 

[ I 5, 
- L (R) + Znv (R, e,) + Y,(R) 

in 

leading 

the 

(4.1) 



The last term in this formula represents the contribution of the near points 8, and -6,: 

Y,,(R)=Re 5 @)nvq(%,%o,-- %,)&(-- I?&,) d% 
-n/a 

(4.2) 

Here q (%,% 0, -%,) = Tl (%,%0)-i-q (%, -%,) is aninfinitelydifferentiable finite functionequal 
tounityonthe segmentswhoseends coincide with the points e. and -%,,. 

Let us find the asymptotic form of the integral (4.2) when R-t+-. The substitution 
0 SEX- %, - u*, 16 = (- en- %)lh (the principal branch of the root is chosen) regularizes A, 
and the integrand in (4.2) when Y = 1. The expression for & can now be written in the form 

A, (%, Y) = 8, (a, w,), S, (a, S) = UPS sin (w, - ma) 

where pR (v) = fr,,s (8, + u)/u is a holomorphic function at the point Y= 0. This follows from 
the fact that the dispersion relations 3,(h) of problem (1.4) are holomorphic functions 
r,,‘(%,&= 0 and dr~~~%*)/d%>O. It can be confirmed that the function &(u. on) satisfies all 
conditions of the lemmas 6.2.1-3 of 191. Using these lemmas and remembering #at 8, (m, Q&l) 
is an odd function of the variable u and returning after this to the initial variable 8, we 
have: 

lo When 1 o,, I+0 are small, the equation 
Oln (0) I'-%,. 

dA,,/d% =O has a single solution %1n (On)* 
The function %,,(%) is holomorphic for small w,, and 

eln(wn)=-e8,--~(I+~bh0,h) 
&=I 

20 

* 
A function 11~(t,0), exists, holomorphic in (t,o) in some neighbourhood of the point 

(0, O), such that u,(O, on)= - 0,. After the substitution 8 = ul(fa, & the function A,, (0, v) 
takes the form 

Li, (8, Y) = - so (f,B), SB (E, B) = PJ3 - EB (4.3) 
B = B (?), 3 (0,) = r," [3sin (9 - ~)/(r~a)~~~~~ 

The arithmetical branch of the root is chosen in the expression for B(o,). 
In the reverse substitution 5 = (- %,-%)V+l(-%,-%, On), the function <I (7,~) is holo- 

morphic in (i, o) in some neighbourhood of the point (0,O). 
30. The function B(Q) is holomorphic at the point W, = 0, and 

The substitution (4.3) transforms the integral (4.2) to the form 

(4.4) 

Wherever the functions of real variable are not defined, they are continued by means 
of the zeros. It can be confirmed that q,,~(t)Ec~. 

We find the asymptotic forms of the integral (4.4) by integrating by parts and using 
(2.3). In the first stage we have 

Y,,(R) = tpnV (B) J,, (H, B) --vfrl’fUhenV (EY In ISo Id5 + (4.5) 
m 

The last integral in (4.5) is of the same type as the initial integral. This enabLes us 
to use the recurrence methods to obtain the expansions of the integrals (4.4) as R-+-+-DO. 
As a result we have 

(44 
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Let us evaluate the integrals J1_,(R, B). From (2.5) it follows that 

The functions H, (g) = Ev I---RSo (E, B)I are holomorphic in the region O<argE<n/& and since 
y_ (;A =B;(E-6+av) as 1 E 1-r 00 which follows from (2.4), it can be shown that the integrals 

are equal to zero. 
sZsti;ution 5 = R-';*t 

The remaining single integrals can be expressed, after the 
, in terms of the Airy function /8/ and its derivative as 

Jo (R, B) = nVW* Ai’ (-BR’f*) bi.71 
J1 (I?, B) = --n2R+ Ai(-BR+) 

Thus the formulas (4.1), (4.6) and (4.7) together with (3.3) and (3.6) show that the 
asymptotic expansions, as R-r-f- 00, of the integrals (2.6) uniform in y near the leading 
front y = Ynr are given in the form of the sums of power series and the series containing 
Airy functions and their derivatives. Let us write out the principal terms of the asymptotic 
expansions when !,y - y,, I<% 

On moving away from the leading front into the wave zone, when the argument of the Airy 
unction becomes large, the substitution of the asymptotic forms Ai and Ai'/8/ into (4.81, 
yields the principal terms of the asymptotic expansions of the contributions from the simple 
stationary point 8r,. 

We treat the second case of merging the singularities when 8,+0,, in exactly the same 
manner. Here the formulas corresponding to (4.6) contain, instead of the integrals Jv CR, B) r 
the integrals r,(R, B) and the asymptotic form of the contribution of the near points 8,, and 
8,, is represented by a power series only. 

The principal terms (4.8) of the asymptotic form of the contribution of the n-th mode 
in the neighbourhood of its leading front are analogous, when c>c,, to those first obtained 
in /6/. The different result obtained in /5/ can be explained by the fact that in f5/ the 
authors dealt with the limiting case of a thin thermal wedge and the depth of the fluid 
tended to infinity. In the case of such an approximation the dispersion relation connecting 
the frequency o with the wave number r can be expanded, for small values of r, in the series 

w = c,,r + brz Jr . . . , cat b = con&, b f 0 

For a fluid of finite depth, the dispersion relations o,(r) can be expanded in series 
in odd powers of r. Since the main contribution to (2.6) is given in the neighbourhood of 
the leading front of the n-th mode by the integral corresponding to small values of the wave 
number, the difference noted above appears to be a fundamental one. 

In conclusion we note that the vertical displacements %j (3, y, z) caused by the action of 
a point dipole oriented against the flow, of moment d, are connected with the vertical dis- 
placements f;(.r, y, a), caused by the action of a point source of strength q by a simple formula: 
n = ~-~I-ia~~ax. Comparing this formula with the kinematic relation w = ca~id.r we find that 
n = d (cp)-‘w and the asymptotic formulas for w obtained in this paper differ only by a 
constant factor fromthe formulas for the field of vertical displacements caused by the action 
of a dipole. The cases of merger of the singularities discussed above when 6a-+f 8,, occur 
only when c > CR. The asymptotic expansions of the integrals (2.6) for the case c<c,, were 
discussed in /lo/. 
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DIFFUSION ANALOGUE OF A COMBUSTION WAVE IN A SYSTEM WITH DISCRETE SOURCES* 

G.G. CHERNAYA 

The problem of selfsustaining concentration waves in discrete quasione- 
dimensional system with diffusion and threshold activation of the sources 
is considered. A number of applications of such models for describing 
spontaneous contraction waves observed in the course of experiments 
involving single muscle cells is discussed. 

For many bological objects the passive transport of matter (caused by a difference in 
concentration) across some barriers such as biological membranes, denends in a complex manner 
on the absolute values of the concentrations on both sides of the barrier. Normally this is 
caused by the fact that transported material takes part in the chemical reactions which 
radically alter the effective permeability of the barrier. 

One of the most interesting processes of this type is the release of Ca"+ ions from the 
inner cavities (terminal cisterns) of the cardiac musle cell directly into the contractile 
apparatus, the release occurring when the concentration of these ions outside the cavities 
reaches some threshold value. It is also necessary, in order for the release to occur, that 
this external concentration should approach its threshold value from below and at a sufficently 
rapid rate /l, 2/. The membrane which confines the intracellular cisterns, distributed 
within the cells in an orderly manner and separated from each other by distances of order at 
least equal to the size of the cisterns themselves, is regarded as the barrier. 

The successive release of the ions from the cisterns can occur either as the result of 
diffusion of the released calcium, or with the help of electric control signals /3/ propagating 
rapidly along the cell. The signal can appear, in principle, as a result of large changes 
in ion concentrations occurring after calcium has been released from the cisterns. The release 
of calcium from the sequentially distributed cisterns results in the formation of a wave of 
increased concentration of calcium propagating along the cell, fallowed by a mechanical 
concentration wave which was observed experimentally in /4/ (the Cal+ ions locally trigger 
the performance of contractile structures of the cell). 


